3rd ACT Questions Test

I didn’t see much out there of hard math ACT problems, so I created these. I have studied thousands of real problems. Some of these involve more than one concept from real problems. Others are hard real problems made harder. This is intended to help students looking for top scores prepare. It should not be used to determine your expected score.

These tests should not be taken timed and should not be used to determine scores. They are all extremely difficult but realistic problems designed to challenge students going for top scores.

1. Using complex arithmetic, what is \sqrt {-3} + \sqrt {-75}

A. 15

B. -15

C. 225

D. 3  \sqrt {6}i

E. 6  \sqrt {3}i

147

Show correct answer

E

2. 5x^2+2x-8=0. Solve for x.

A. x=\dfrac{-1 \pm \sqrt{41}}{5}

B. x=\dfrac{-1 \pm \sqrt{5}}{41}

C. x=\dfrac{-8 \pm \sqrt{2}}{5}

D. x=\dfrac{-8 \pm \sqrt{5}}{2}

E. x=\dfrac{-2 \pm \sqrt{5}}{8}

Show correct answer

A

3. Which of the following is equivalent to |2x – C| > D, where C and D are constants.

A. 2x + C > D or C + 2x > D

B. 2x + C > D or C – 2x > D

C. 2x – C > D or C + 2x > D

D. 2x – C > D or C – 2x > D

E. x + C > D or C + x > D

Show correct answer

D

4. What is the minimum value of x for which when x is divided by 7 the remainder is 4 and when x is divided by 5 the remainder is 2?

A. 12

B. 21

C. 23

D. 32

E. 34

Show correct answer

D

5. If 2 ^{x^2 + 3x + 2} = 32, what is x?

A. x=\dfrac{-2 \pm \sqrt{3}}{21}

B. x=\dfrac{-2 \pm \sqrt{21}}{3}

C. x=\dfrac{-21 \pm \sqrt{2}}{3}

D. x=\dfrac{-3 \pm \sqrt{2}}{21}

E. x=\dfrac{-3 \pm \sqrt{21}}{2}

Show correct answer

E

6. What is the equation of the tangent line to the circle (x-2)^2 + (y-5)^2 = 16 at the point (2,1)?

A. x=1

B. y=1 

C. 2x+5y=16

D. 5x+2y=16

E.x+y=5

Show correct answer

C

7. What is the area of the circle (x -4)^2 + (y + 11) ^ 2 = 71?

A. 71\pi

B. 73\pi

C. 75\pi

D. 77\pi

E. 79\pi

Show correct answer

A

8. What is the equation of the factored form with integer coefficients \dfrac{5}{2}, -\dfrac{3}{5}, 7i, and -7i?

A. (2x+5)(3x+5)(x^2+49)=0

B. (2x+5)(3x+5)(x^2-49)=0

C. (2x-5)(3x+5)(x^2+49)=0

D. (2x-5)(5x+3)(x^2+49)=0

E. (2x-5)(3x-5)(x^2-49)=0

Show correct answer

D

9. 8 ^{x + 1} = \dfrac{1}{32^{x+3}}. Solve for x.

A. x=-\dfrac{2}{3} 

B. x=-\dfrac{3}{2}

C. x=-\dfrac{4}{9}

D. x=-\dfrac{9}{4}

E. x=-\dfrac{3}{4}

Show correct answer

D

10. At 186,000  miles per second, how far in miles does a beam of light travel in one year in scientific notation? 

A. 1.86 \times 10^3

B. 1.86 \times 10^5

C. 5.9 \times 10^3

D. 5.9 \times 10^5

E. 5.9 \times 10^{12}

Show correct answer

E

11. If \sin{x} = a, 0 < x < \dfrac{\pi}{2}, what is \tan{x}?

A. \dfrac{a}{\sqrt{ 1- a^2}}

B. \dfrac{a}{\sqrt{ a^2-1}}

C. \dfrac{a}{\sqrt{ 1+ a^2}}

D. \dfrac{1-a^2}{\sqrt{ a}}

E. \dfrac{1+a^2}{\sqrt{a}}

Show correct answer

A

12. If \dfrac{(x + 5)!}{(x + 2)!} = 210, then what does \dfrac{(x+8)!}{(x+6)!} equal?

A. 34

B. 43

C. 45

D. 54

E. 90

Show correct answer

E

13. What is the distance between the points (a , 2a + 5) and (4a, a -1)?

A. \sqrt {6a^2 + 10a + 36}

B. \sqrt {6a^2 + 36a + 10}

C. \sqrt {10a^2 + 6a + 36}

D. \sqrt {10a^2 + 36a + 6}

E. \sqrt {10a^2 + 12a + 36}

Show correct answer

E

14. \sqrt[5]{x^2 + x + 2} = 2. Solve for x.

A. –6, –5

B. –6, 5

C. 6, –5

D. 6, 5

E. –5, –6

Show correct answer

B

15. f(x) = x^2 + 3x + 2. What is f(f(x))?

A. x^4+6x^3+16x^2+21x+1

B. x^4+12x^3+6x^2+18x+18

C. x^4+18x^3+6x^2+18x+12

D. x^4+6x^3+18x^2+18x+12

E. x^4+12x^3+18x^2+18x+6

Show correct answer

A

16. What is \dfrac{3 \times 10^a}{8 \times 10 ^ b} in scientific notation?

A. 3.75 \times 10 ^ { a - b - 1}

B. 3.75 \times 10 ^ { a + b - 1}

C. 3.75 \times 10 ^ { a - b + 1}

D. 3.75 \times 10 ^ { a + b +1}

E. 3.75 \times 10 ^ { -a - b - 1}

Show correct answer

A

16. What is \dfrac{3 \times 10^a}{8 \times 10 ^ b} in scientific notation?

A. 3.75 \times 10 ^ { a - b - 1}

B. 3.75 \times 10 ^ { a + b - 1}

C. 3.75 \times 10 ^ { a - b + 1}

D. 3.75 \times 10 ^ { a + b +1}

E. 3.75 \times 10 ^ { -a - b - 1}

Show correct answer

A

17. What is -\dfrac{37\pi}{5} radians in degrees between 0^\circ and 360^\circ?

A. 36^\circ

B. 72^\circ

C. 108^\circ

D. 144^\circ

E. 162^\circ

Show correct answer

C

18. For what value of x is y a minimum y = 3x^2 + 10 x + 11?

A. -\dfrac{3}{5}

B. -\dfrac{5}{3}

C. -\dfrac{4}{7}

D. -\dfrac{7}{4}

E. -\dfrac{3}{7}

Show correct answer

B

19. B = 1000^ {3C- 4D}. What is the \log_{10} B?

A. 3C - 6 D

B. 6C - 9D

C. 9C - 12 D

D. 12C - 15 D

E. 15C - 18 D

Show correct answer

C

20. What is (2x^3 y^{-5})^{-4}?

A. \dfrac{y^{16}}{20 x^{12}}

B. \dfrac{y^{20}}{16 x^{12}}

C. \dfrac{y^{12}}{16 x^{20}}

D. \dfrac{y^{20}}{20 x^{16}}

E. \dfrac{y^{16}}{12 x^{20}}

Show correct answer

B

21. f(x) = -2x^5. What is f(f(x))

A. 4x^{10}

B. 8x^{10}

C. 16x^{20}

D. 32x^{20}

E. 64x^{25}

Show correct answer

22. f(x) = \sqrt{x}. What is f(f(x))? 

A. \sqrt{x}

B. \sqrt[3]{x}

C. \sqrt[4]{x}

D. \sqrt[5]{x}

E. \sqrt[6]{x}

Show correct answer

C

23. y = bx + 5 goes through the point (3,-1). What is b?

A. –2

B. –1

C. 1

D. 2

E. 3

Show correct answer

A

24. What is the units digit of 53^{175}

A. 1

B. 3

C. 5

D. 7

E. 9

Show correct answer

D

25. What are all the solutions of |x^2| + 3|x| - 10 = 0?

A. 1 and –1

B. 2 and –2

C. 3 and –3

D. 4 and –4

E. 5 and –5

Show correct answer

B

26. What is \log_4 {\dfrac{1}{32}}?

A. -\dfrac{1}{4}

B. -\dfrac{1}{8}

C. -\dfrac{1}{32}

D. -\dfrac{2}{5}

E. -\dfrac{5}{2}

Show correct answer

E

27. 5x^2 - 5y^2 + 10x - 10y = 23 is a(n)?

A. line

B. circle

C. ellipse

D. parabola

E. hyperbola

Show correct answer

E

28. f(x) = e^{3x+2} + 4. What is f^{-1}(20)?

A. 0.258

B. 0.285

C. 0.528

D. 0.582

E. 0.825

Show correct answer

A

Answer key: 1E, 2A, 3D, 4D, 5E, 6B, 7A, 8C, 9D, 10E, 11A, 12C, 13C, 14B, 15D, 16A, 17C, 18B, 19C, 20B, 21E, 22C, 23A, 24D, 25B, 26E, 27E, 28A