ACT Math Problems -- Test 2

I didn’t see much out there of hard math ACT problems, so I created these. I have studied thousands of real problems. Some of these involve more than one concept from real problems. Others are hard real problems made harder. This is intended to help students looking for top scores prepare. It should not be used to determine your expected score.

These tests should not be taken timed and should not be used to determine scores. They are all extremely difficult but realistic problems designed to challenge students going for top scores.

1. The distance between (3,4) and (x,11) is 11. What is one possible value of x?

A. 10
B. -5
C. 3 + 2 \sqrt{6}
D. 3 + 6 \sqrt{2}
E. 6 + 3 \sqrt{2}

Show correct answer

D

2. The set of values satisfying |3x -5| < 4 is

A. \dfrac{1}{2}<x<2

B. \dfrac{1}{3}<x<3

C. \dfrac{1}{4}<x<4

D. \dfrac{1}{5}<x<5

E. \dfrac{1}{6}<x<6

Show correct answer

B

3. What is the product of matrices of A=\left[ \begin{array}{cccc} 1 & 2 & 3 & 4\\ 5 & 6 & 7 & 8\\ \end{array} \right] and B=\left[ \begin{array}{cc} 2 & 3 \\ 1 & 5 \\ 2 & 4 \\ 1 & 2 \\ \end{array} \right]?

A. \left[ \begin{array}{cc} 14 & 33 \\ 38 & 89 \\ \end{array} \right]

B. \left[ \begin{array}{cc} 14 & 38 \\ 33 & 89 \\ \end{array} \right]

C. \left[ \begin{array}{cc} 33 & 89\\ 14 & 38 \\ \end{array} \right]

D. \left[ \begin{array}{cc} 89 & 14 \\ 33 & 38 \\ \end{array} \right]

E. \left[ \begin{array}{cc} 38 & 33 \\ 89 & 14 \\ \end{array} \right]

Show correct answer

A

4. What is a solution of 3x^2-2x+5=0 ?

A. \dfrac{5 - i\sqrt{17}}{3}

B. \dfrac{4 - i\sqrt{10}}{2}

C. \dfrac{3 - i\sqrt{11}}{3}

D. \dfrac{2 - i\sqrt{13}}{2}

E. \dfrac{1 - i\sqrt{14}}{3}

Show correct answer

E

5. The area of a circle is 324\pi. What is its circumference?

A. 18\pi
B. 24\pi
C. 30\pi
D. 36\pi
E. 42\pi

Show correct answer

D

6. \sin{x}=\dfrac{4}{7}, 180^{\circ}>x>90^{\circ}. What is \tan{x}?

A. -\dfrac{3\sqrt{22}}{22}

B. \dfrac{3\sqrt{22}}{22}

C. -\dfrac{4\sqrt{33}}{33}

D. \dfrac{4\sqrt{33}}{33}

E. -\dfrac{7}{4}

Show correct answer

C

7. What is the digit in the one’s place of 7^{2000}?

A. 1
B. 3
C. 5
D. 7
E. 9

Show correct answer

A

8. \dfrac{5x - 3y}{4x + y} = \dfrac{2}{3}. What is \dfrac{y}{x} equal to?

A. \dfrac{3}{5}

B. \dfrac{5}{3}

C. \dfrac{5}{7}

D. \dfrac{7}{5}

E. \dfrac{7}{11}

Show correct answer

E

9. 11 is 8% of what?

A. 3 
B. 19
C. 88
D. 88.5
E. 137.5

Show correct answer

E

10. An account increased by 10% per year for 20 years. What was the total percent increase in the account over the 20 years?

A. 200%
B. 300%
C. 427%
D. 573%
E. 673%

Show correct answer

D

11. If you are driving at 50 mph, what is your speed in feet per second to the nearest foot? (5280 feet equals one mile)

A. 73 ft/sec
B. 77 ft/sec
C. 83 ft/sec
D. 87 ft/sec
E. 93 ft/sec

Show correct answer

A

12. What is the period of y = \cot{20x}?

A. \pi
B. 20
C. \dfrac{\pi}{20}
D. 20\pi
E. \dfrac{20}{\pi}

Show correct answer

C

13. What is i^{383}(i=\sqrt{-1})

A. -1
B. -i
C. 1
D. i
E. \dfrac{-1}{i}

Show correct answer

B

14. Which of the following is a factor of 8x^3+27?

A. 4x^2+6x+9

B. 4x^2-6x+9

C. 9x^2+6x+4

D. 9x^2 - 6x + 4

E. 9x^2 - 6x - 4

Show correct answer

B

15. 8% of 50 is 12% of what?

A. 133.33
B. 33.33
C. 143.33
D. 146.67
E. 153.33

Show correct answer

B

16. Which quadratic equation has the complex number 3 + 5i as a solution?

A. x^2-2x+18 = 0
B. x^2-3x+22 = 0
C. x^2-4x+26 = 0
D. x^2-5x+30 = 0
E. x^2-6x+34 = 0

Show correct answer

E

17. What are the foci of the ellipse \dfrac{(x + 5)^2}{25} + \dfrac{(y - 8)^2}{49} = 1?

A. (5,-8 \pm 2 \sqrt{2})
B. (8,8 \pm 2 \sqrt{2})
C. (-5,8 \pm 2 \sqrt{2})
D. (-5,8 \pm 2 \sqrt{6})
E. (-5,5 \pm 2 \sqrt{2})

Show correct answer

D

18. What is the x-intercept of the ellipse \dfrac{(x + 5)^2}{25} + \dfrac{(y - 8)^2}{49} = 1?

A. -5 \pm \dfrac{5 \sqrt{7}}{15}i
B. -5 \pm \dfrac{5 \sqrt{15}}{7}i
C. -15 \pm \dfrac{5 \sqrt{5}}{7}i
D. -15 \pm \dfrac{5 \sqrt{7}}{5}i
E. -15 \pm \dfrac{7 \sqrt{5}}{7}i

Show correct answer

B

19. What are the vertices of the ellipse \dfrac{(x + 5)^2}{25} + \dfrac{(y - 8)^2}{49} = 1?

A. (-5,1), (-5,15)
B. (1,-5), (15,-5)
C. (5,-1), (5,-15)
D. (-5,1), (5,15)
E. (-1,5), (-15,5)

Show correct answer

A

20. A rectangle is 4 centimeters by 11 centimeters. What is its area in square millimeters?

A. 1100 mm^2
B. 2200 mm^2
C. 3300 mm^2
D. 4400 mm^2
E. 5500 mm^2

Show correct answer

D

21. If \log_{2}{300} - \log_{2}{75} = \log_{10}{x}, what is x?

A. 100
B. 200
C. 300
D. 400
E. 500

Show correct answer

A

22. Which of the following equals (x + 2i)^4?

A. x^4 -8x^3 i+24x^2+32x i-16
B. x^4 +8x^3 i-24x^2+32x i-16
C. x^4 -8x^3 i-24x^2-32x i-16
D. x^4 +8x^3 i+24x^2+32x i+16
E. x^4 +8x^3 i-24x^2-32x i+16

Show correct answer

E

23. Solve for x, \ln {(x + 5)} = 3?

A. e^5 - 3
B. e^5 + 3
C. e^3 - 5
D. e^3 + 5
E. 5e^3

Show correct answer

C

24. Solve for x, e^{x - 2} = 8?

A. ln{2} -8
B. ln{2} +8
C. ln{8} - 2
D. ln{8} + 2
E. 2ln{8}

Show correct answer

D

25. You have a 70% chance of winning each of 2 games. What is the chance you lose both game?

A. 5%
B. 6%
C. 7%
D. 8%
E. 9%

Show correct answer

E

26. If today in Saturday, what day of the week will it be 1000 days for now?

A. Monday
B. Tuesday
C. Wednesday
D. Thursday
E. Friday

Show correct answer

E

27. What is \log_{3}{\sqrt {243}}?

A. \dfrac{2}{5}
B. \dfrac{5}{2}
C. -\dfrac{2}{5}
D. -\dfrac{5}{2}
E. 81

Show correct answer

B

28. What is \log_{2}{\dfrac{1}{128}}?

A. -9
B. -7
C. -5
D. -3
E. -1

Show correct answer

B

29. If x^{5b} = 2, then x^{20b}= what?

A. 16
B. 17
C. 18
D. 19
E. 20

Show correct answer

A

30. A line has an x intercept of -6 and a slope of \dfrac{2}{3}. What is its y intercept?

A. 1
B. 2
C. 3
D. 4
E. 5

Show correct answer

D

31. What is the period of y = 4 \sin {8x}?

A. \dfrac{\pi}{2}
B. \dfrac{\pi}{4}
C. \dfrac{\pi}{8}
D. \dfrac{\pi}{16}
E. \dfrac{\pi}{32}

Show correct answer

B

32. What is the distance between 3 - 11i and -2 - 4i in the complex plane?

A. \sqrt{44}
B. \sqrt{54}
C. \sqrt{74}
D. \sqrt{84}
E. \sqrt{94}

Show correct answer

C

33. What is the domain of y = \log {( x^2 + 3x + 2)}?

A. (-\infty, -2) \cup (-1, \infty)
B. (-\infty, -2) \cup (1, \infty)
C. (-\infty, -1) \cup (2, \infty)
D. (-\infty, -2) \cup (2, \infty)
E. (-\infty, -1) \cup (1, \infty)\sqrt{94}

Show correct answer

A

34. How many different committees of 3 men and 2 women can be formed from a group of 8 men and 5 women?

A. 5
B. 6
C. 56
D. 65
E. 560\sqrt{94}

Show correct answer

E

34. How many different committees of 3 men and 2 women can be formed from a group of 8 men and 5 women?

A. 5
B. 6
C. 56
D. 65
E. 560\sqrt{94}

Show correct answer

E

35. What is the matrix product \left [\begin{array}{c} 3 \\ 4 \\ 5 \end{array} \right ] \left [\begin{array}{ccc} 1 & 2 & 3 \end{array} \right ] ?

A. \left [\begin{array}{ccc} 3 & 6 & 9 \\ 4 & 8 & 12 \\ 5 & 10 & 15 \\ \end{array} \right ]
B. \left [\begin{array}{ccc} 3 & 4 & 5 \\ 6 & 8 & 10 \\ 9 & 12 & 15 \\ \end{array} \right ]
C. \left [\begin{array}{ccc} 3 & 8 & 15 \\  \end{array} \right ]
D. \left [\begin{array}{c} 26 \\ \end{array} \right ]
E. \left [\begin{array}{c} 3 \\ 8 \\ 15 \\ \end{array} \right ]\sqrt{94}

Show correct answer

A

36. What is the solution set of |3x + 5| > -2?

A. No solution
B. (-2,5)
C. (-2,3) \cup (3,5)
D. (-\infty,-2) \cup (-2,3) \cup (3,5) \cup (5,\infty)
E. All reals

Show correct answer

E

37. If you triple the sides of a box, the surface area is multiplied by what factor?

A. 3
B. 6
C. 9
D. 18
E. 27

Show correct answer

C

38. The product of two numbers is 20 and their sum is 10. What is greater of the two numbers?

A. 2 + \sqrt{2}
B. 3 + \sqrt{3}
C. 5 + \sqrt{5}
D. 6 + \sqrt{6}
E. 7 + \sqrt{7}

Show correct answer

C

39. What is the measure of each interior angle of a regular octagon in degrees?

A. 45^\circ
B. 60^\circ
C. 120^\circ
D. 135^\circ
E. 150^\circ7 + \sqrt{7}

Show correct answer

D

40. {(\sqrt {2})}^a = \left( \dfrac{1}{32} \right) ^ b. What is the ratio \fdrac{a}{b}?

A. -10
B. -5
C. 0
D. 5
E. 107 + \sqrt{7}

Show correct answer

A

41. What is 37 parts per million in scientific notation?

A. 3.7 \times 10^{-6}
B. 3.7 \times 10^{-5}
C. 3.7 \times 10^{-3}
D. 3.7 \times 10^{5}
E. 3.7 \times 10^{6}7 + \sqrt{7}

Show correct answer

B

42. What is the sum of the first 100 positive integers?

A. 1010
B. 2020
C. 3030
D. 4040
E. 50507 + \sqrt{7}

Show correct answer

E

43. f(x) = \sqrt[5]{2x+11}. What is f^{-1}(x)?

A. f^{-1} (x) = \dfrac{x^2-5}{11}
B. f^{-1} (x) = \dfrac{x^2-11}{5}
C. f^{-1} (x) = \dfrac{x^5-2}{11}
D. f^{-1} (x) = \dfrac{x^5-11}{2}
E. f^{-1} (x) = \dfrac{x^{11}-2}{5}

Show correct answer

D

44. If \cot{x} = 5 and \sin {x} < 0, what is \sec{x}?

A. \dfrac{\sqrt{5}}{26}
B. \dfrac{\sqrt{5}}{62}
C. \dfrac{\sqrt{25}}{6}
D. \dfrac{\sqrt{26}}{5}
E. \dfrac{\sqrt{62}}{5}

Show correct answer

D

45. y = 8t + 5, x = 5 - 4t. What is y in terms of x?

A. y=2+15x
B. y=2-15x
C. y=15-2x
D. y=15+2x
E. y=\dfrac{15}{2x}

Show correct answer

C

46. f(x)=x^2+3x+2. What is f(x+a)?

A. f(x+a) = f(x)+f(a)
B. f(x+a) = f(x)+f(a)-1
C. f(x+a) = f(x)+f(a)+ax
D. f(x+a) = f(x)+f(a)+ax-1
E. f(x+a) = f(x)+f(a)+2(ax-1)

Show correct answer

E

47. The ratio of the radii of two spheres is 3:4. What is the ratio of their volumes?

A. 3:4
B. 9:16
C. 27:64
D. 1:7
E. 1:12

Show correct answer

C

48. The ratio of the radii of two spheres is 3:4. What is the ratio of their surface areas?

A. 3:4
B. 9:16
C. 27:64
D. 1:7
E. 1:12

Show correct answer

B

49. How many two digit positive numbers have a units digit twice the tens digit?

A. 4
B. 6
C. 8
D. 10
E. 12

Show correct answer

A

50. x^2 + 11x + g =0 will have one solution for what value of g?

A. \dfrac{2}{11}
B. \dfrac{4}{121}
C. \dfrac{11}{2}
D. \dfrac{121}{4}
E. \dfrac{121}{2}

Show correct answer

D

51. x + y = 3a, x - y = 5b. What is x in terms of a and b?

A. \dfrac{3a-5b}{2}
B. \dfrac{3a+5b}{2}
C. \dfrac{5b-3a}{2}
D. \dfrac{2}{3a+5b}
E. \dfrac{2}{3a+5b}

Show correct answer

B

52. If 3^{x^2 - 4} = 1, what are the possible values of x?

A. -1 and 1
B. -2 and 2
C. -3 and 3
D. -4 and 4
E. -5 and 5

Show correct answer

B

53. Solve | 3x + 5 | = | -7|.

A. \dfrac{2}{3},-4
B. \dfrac{3}{5},-7
C. \dfrac{3}{7},-5
D. \dfrac{3}{4},-2
E. \dfrac{5}{7},-3

Show correct answer

A

54. The endpoints of the diameter of a circle are (-7, 5) and (2, 11) What is the equation of the circle?

A. (x-3)^2+(y-8)^2=25
B. (x+7)^2+(y-5)^2=25
C. (x-2)^2+(y-11)^2=25
D. (x+3)^2+(y-8)^2=25
E. (x-3)^2+(y+8)^2=25

Show correct answer

D

55. 4^{x + 3} = 32 ^{5-x}. Solve for x.

A. \dfrac{3}{4}
B. \dfrac{4}{3}
C. \dfrac{5}{32}
D. \dfrac{7}{19}
E. \dfrac{19}{7}

Show correct answer

E

56. a + b = 12, \dfrac{a}{b} = \dfrac{5}{3}. What is a?

A. \dfrac{2}{15}
B. \dfrac{15}{2}
C. \dfrac{5}{12}
D. \dfrac{12}{5}
E. \dfrac{2}{3}

Show correct answer

B

57. y = -11 \sin { \left(\dfrac{3\pi }{4}x + 5\right) }. What are amplitude and period of the function?

A. 11,\dfrac{8}{3}
B. 11,\dfrac{5}{3}
C. 11,\dfrac{5}{4}
D. 5,\dfrac{3}{11}
E. 5,\dfrac{8}{11}

Show correct answer

A

58. What is the domain of y = \dfrac{x + 8}{ \sqrt {3x + 4}}?

A. x>-\dfrac{3}{4}
B. x>\dfrac{3}{4}
C. x>-\dfrac{4}{3}
D. x>\dfrac{4}{3}
E. x>-8

Show correct answer

C

59. y = x^2 + 3x + 8 is shifted up 2 and right 5. What is the new equation?

A. x^2-7x+20
B. x^2-8x+10
C. x^2+7x-20
D. x^2+8x+10
E. x^2-7x+8

Show correct answer

A

60. Using complex arithmetic, what is \sqrt {-3} \times \sqrt {-75}?

A. -25
B. -15
C. 15
D. 25
E. 225

Show correct answer

B

Answer key: 1D, 2B, 3A, 4E, 5D, 6C, 7A, 8E, 9E, 10D, 11A, 12C, 13B, 14B, 15A, 16E, 17C, 18B, 19A, 20D, 21A, 22E, 23C, 24D, 25E, 26E, 27B, 28B, 29A, 30D, 31B, 32C, 33A, 34E, 35A, 36E, 37C, 38C, 39D, 40A, 41B, 42E, 43C, 44D, 45C, 46E, 47C, 48B, 49A, 50D, 51B, 52B, 53A, 54D, 55E, 56B, 57A, 58C, 59A, 60B