Advanced ACT Math Formulas

Advanced ACT math formulas, Advanced ACT math formula sheet, Advanced ACT equations

To find 23\% of 70, take .23 \times 7023 is what percent of 70\dfrac{23}{70} \times 100.

23 is 70\% of what? 23 = .7x, \dfrac{23}{.7}=x.

10\% increase followed by a 20\% increase is (1.1\times 1.2) - 1\times 100 = 32\%.

\text{Distance} = \text{Rate} \times \text{time}

Midpoint formula:\Bigg(\dfrac{x_1 + x_2}{2}, \dfrac{y_1 + y_2}{2}\Bigg)

Slope formula: \dfrac{y_1 - y_2}{x_1 - x_2}

Distance formula: \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 }

If two lines are perpendicular, their slopes are negative reciprocals.

Given a point (x_1, y_1) and a slope m, the equation of the line is y - y_1 = m(x - x_1)

Alternatively, you can use y_1 = mx_1+ b, and solve for b

Slope of line in form ax + by = c is -\dfrac{a}{b}

In slope intercept form: by = -ax + c \rightarrow y = -\dfrac{a}{b}x+\dfrac{c}{b}

Triangle inequality: if two sides have length a and b, the other side c is |a - b| < c < a + b

30-60-90 triangle has side lengths with ratios 1-\sqrt{3}-2

45-45-90 triangle has side lengths with ratios 1-1-\sqrt{2}

Volume of a box: lwh

Volume of a cube: s^3

Surface area of a box: 2(lw+lh+wh)

Surface area of a cube: 6s^2

Diagonal of a box: \sqrt{l^2+w^2+h^2}

Diagonal of a cube: \sqrt{3}s^3

If a cube is inscribed in a sphere, the diagonal of the cube = the diameter of the sphere.

Volume of a cone: \dfrac{\pi r^2 h}{3}

Surface area of a cylinder: 2 \pi r^2 + 2\pi r h

Surface area of a sphere: 4\pi r^2

Volume of a sphere: \dfrac{4\pi r^3}{3}

Area of an equilateral triangle: \dfrac{\sqrt{3}s^2}{4}

Area of a parallelogram: bh

Area of a trapezoid: \dfrac{(b_1 + b_2)h}{2}

Rhombus area formula: \dfrac{d_1 d_2}{2}

Perimeter of a rectangle: 2l+2w

Circumference of circle: 2 \pi r

Area of a circle: \pi r^2

Volume of cylinder: \pi r^2 h

Surface area of cylinder: 2 \pi r^2 + 2 \pi r h

The diagonals of a rhombus are perpendicular.

Sum of interior angles of polygon: 180^{\circ}(n-2)

The sum of the roots of a quadratic: -\dfrac{b}{a}.

The quadratic formula: \dfrac{-b \pm \sqrt{b^2 - 4ac} }{2a}

x-coordinate of the vertex of a parabola: -\dfrac{b}{2a}

y = (x - a)^2 + b is a parabola in vertex form. Its vertex is (a,b).

To find the equation of a quadratic given x-intercepts a and b, take y = (x-a)(x-b) and FOIL it out.

Sum and difference of cubes formulas: a^3+b^3 =(a+b)(a^2-ab+b^2)a^3-b^3 =(a-b)(a^2+ab+b^2)

\text{cot} = \dfrac{1}{\text{tan}} \quad \text{csc} = \dfrac{1}{\text{sin}} \quad \text{sec} = \dfrac{1}{\text{cos}}

\text{sin} = \dfrac{\text{opp}}{\text{hyp}} \quad \text{cos} = \dfrac{\text{adj}}{\text{hyp}} \quad \text{tan} = \dfrac{\text{opp}}{\text{adj}}

Radians to degrees: \dfrac{\pi}{180^{\circ}}

Degrees to radians: \dfrac{180^{\circ}}{\pi}

Law of sines: \dfrac{\text{sin } A}{a} = \dfrac{\text{sin } B}{b} = \dfrac{\text{sin } C}{c}

Law of cosines: c^2 = a^2 + b^2 - 2ab \text{ cos } C or \text{cos } C = \dfrac{a^2 + b^2 + c^2}{2ab}

\text{sin }^2 x + \text{cos}^2 x = 1, \quad \text{sin}^2 x = 1 - \text{cos}^2 x, \quad \text{cos}^2 x = 1 - \text{sin}^2 x

\text{tan }^2 x + 1 = \text{sec}^2 x, \quad 1 + \text{csc}^2 x = \text{cot}^2 x, \quad \text{sec}^2 x - \text{tan}^2 x = 1

\text{sin } 2x = 2 \text{sin } x \text{cos } x, \quad \text{cos } 2x = \text{cos}^2 x - \text{sin}^2 x = 2 \text{cos}^2 x - 1 = 1 - 2\text{sin}^2 x

\text{sin } 30^{\circ} = \text{cos } 60^{\circ} = \dfrac{1}{2}, \text{sin } 60^{\circ} = \text{cos } 30^{\circ} = \dfrac{\sqrt{3}}{2}, and

\text{sin } 45^{\circ} = \text{cos } 45^{\circ} = \dfrac{\sqrt{2}}{2}, \text{tan } 30^{\circ} = \dfrac{\sqrt{3}}{3}, and \text{tan } 60^{\circ} = \sqrt{3}

The trigonometric area formula is \text{Area} = \dfrac{ab \text{ sin } A}{2}

In the function y = a \text{ sin } bx, |a| is the amplitude and \dfrac{2\pi}{b} is the period.

\text{log } ab = \text{log } a + \text{log } b

\text{log } \dfrac{a}{b} = \text{log } a - \text{log } b

\text{log } a^b = b \text{log } a

\text{arc length} = 2 \pi r \dfrac{\theta}{360}

\text{area of pie slice} = \pi r^2 \dfrac{\theta}{360}

Circle with center (x_1,y_1) and radius r is (x-x_1)+(y-y_1)^2=r^2

Factorial: n! = n(n-1)(n-2) \cdots 1

Combinations: pick k of n\dfrac{n!}{k!(n-k)!}

Permutations: \dfrac{n!}{(n-k)!}

The number of permutations of the letters in MISSISSIPPI is \dfrac{11!}{(4! \times 4! \times 2!)}

A sum of arithmetic series formula is a_1 + a_2 + \cdots + a_n is \dfrac{(a_1 + a_n) \times n}{2}

The sum of an infinite geometric series: a_1 + a_2 + \cdots = \dfrac{a_1}{(1-r)}

for depreciation, A = P (1 - r)^t

for simple interest, use A = P(1+r)^t

for compound interest, use A = P \Bigg( 1 + \dfrac{r}{n} \Bigg)^{nt}

for continuous interest, use A= Pe^{rt}

Contrapositive: “All tables are flat” is the same as “If it is not a table, it is not flat”. Switch them and make them both not, and it is the same thing.

Rotating 90^{\circ} clockwise, (a,b) \rightarrow (-b,a),

Rotating 90^{\circ}  counterclockwise, (a,b) \rightarrow (b,-a)

Rotating 180^{\circ} : (a,b) \rightarrow (-b,-a)

Reflecting about the x-axis, (a,b) \rightarrow (a,-b)

Reflecting about the y-axis, (a,b) \rightarrow (-a,b)

If y = x^2 is moved 3 up and 5 to the right, the new equation is y =(x-5)^2+3.

Similarly, if the circle x^2 + y^2 = 36 is moved 3 up and 5 to the right, the new equation is (x-5)^2 +(y-3)^2 = 36.

The best guide to ACT math formulas, also known as ACT formula sheet and ACT equations. The math ACT provides no formulas, so it is best to study and memorize these formulas. Also pages on ACT math problems, an ACT math guide, and aCT math tutoring for 2024.